
QTAB
A Professional Cross-Tabulation Program

User's Guide

Revision: 21.1.5

QTAB is the tabulation component of the QUIP System

QUIP System software is available from:

www.quipsoftware.com

QTAB documentation by

Jan Werner Data Processing

Copyright 1998-2021 Jan Werner Data Processing

QTAB User's Guide Revision: 21.1.5 Page i

TABLE OF CONTENTS

TABLE OF CONTENTS ... i
INTRODUCTION ..1
1 THE SPEC FILE ..1

1.1 Essential Elements ...2
1.2 Keywords and Statements ..2

2 DATA DIRECTIVES ...2
2.1 File Names..3
2.2 Compute and Recompute ...3
2.3 Command Line Data Directives ...3

3 GLOBAL OPTIONS ...4
3.1 Address Mode ...4
3.2 Run Options ..5
3.3 Run Titles..6
3.4 Summary Row and Column Labels ...6

4 VARIABLE DEFINITIONS ..7
4.1 The VAR statement ...7

4.1.1 Classes of Variables ..8
4.1.2 Examples of VAR statements ..8
4.1.3 Variable Equates ...8

4.2 Labels and Table Annotation...9
4.2.1 Titles and footnotes..9
4.2.2 Stub Annotation ...10
4.2.3 Header Annotation ...10
4.2.4 Base Annotation ..11

4.3 Ranking and Rank Levels ...11
5 THE QUIP SPECIFICATION LANGUAGE ...12

5.1 Data Specifications ...12
5.1.1 Addressing Data ..12
5.1.2 Fields and Numbers ...13
5.1.3 Columns and Punches ...14
5.1.4 Literals, Constants and Numeric Expressions ..14

5.2 Counting Cases ..14
5.2.1 Field and Numeric Tests ..14
5.2.2 Punch Tests ...15
5.2.3 Boolean Operators and Compound Tests ..16
5.2.4 Examples of Test Conditions ...16

5.3 Weights ...17
6 SPECIFYING ROWS AND COLUMNS ..17

6.1 Volumetrics ...18
6.2 Generated Vectors ..18
6.3 Value, Range and Array Field Operators ..19

6.3.1 The Value Field Operator ...19
6.3.2 The Range Field Operator ...19
6.3.3 The Array Field Operator ...20

6.4 Nets and Subtotals ..20
6.4.1 Tags ..20
6.4.2 Nets ...20

QTAB User's Guide Revision: 21.1.5 Page ii

6.4.3 Subtotals ..21
6.4.4 Examples of Nets and Subtotals ..21
6.4.5 Special Purpose Subtotals ...21

6.5 Statistical Subtotals ...22
6.5.1 Numbersets ...22
6.5.2 Statistical Subtotals Using Numbersets..22
6.5.3 Extended Statistical Subtotals ..23

6.6 Specifying Cell Punctuation in Variable Specifications ..24
7 TABLE DEFINITIONS ..24

7.1 The Table Definition Line ..25
7.2 Dupe and Merge Lines ..25
7.3 Table Cells and Contents ..26

7.3.1 Tabulated Data Cells ...26
7.3.2 Percentage Cells ...27

7.4 Table Options ...27
7.4.1 The TCELLS, PCELLS and COMP Keywords ..28
7.4.2 The POST Keyword ...28
7.4.3 The RANK Keyword ...29
7.4.4 The SUMMARY Keyword...29
7.4.5 The STATS Keyword ...29
7.4.6 The TITLES Keyword ...30

7.5 Derived Tables ..30
7.6 Line Tabulations and Spreads..31

8 POST PROCESSING ..32
8.1 Post Processing Sets ..32
8.2 Post Processing Operands and Results ..32

8.2.1 Vector Names ..33
8.2.2 Cell Names ..33
8.2.3 Cell Punctuation Masks ...34

8.3 Post Processing Operations ..34
8.3.1 Computational Operators ...35
8.3.2 Text Operators ...36
8.3.3 Post Processing Loops ..36

8.4 Examples of Post Processing..36
9 DICTIONARIES ...36

9.1 Dictionary Labels and Definitions ..37
9.2 Using Dictionary Substitutions...37
9.3 Built-in Dictionary Labels ...38
9.4 Command Line Parameters ..38

10 MACRO TEMPLATES ..38
10.1 Defining Variables From Macro Templates ..39
10.2 Using Macro Templates With Dictionaries ...39

11 FLOW CONTROL AND BATCH PROCESSING ...40
11.1 Includes ...40
11.2 Stopping and Starting Specs and Listings ...41

12 INTERFACING WITH OTHER SOFTWARE ...42
12.1 Tabulating Data from .DBF Files ...42
12.2 Importing Tables into Spreadsheets ..42

13 WHERE TO GET ADDITIONAL INFORMATION ..43

QTAB User's Guide Revision: 21.1.5 Page 1

INTRODUCTION
The QUIP System is a software package that allows almost any data set to be tabulated and the
results presented as fully annotated tables. It includes programs to handle data manipulation
and conversions, validity checking, marginal counts and weighting, as well as cross-tabulation.
The QUIP System was designed to meet the needs of data processing professionals. Most of
the programs are script-driven using a common language. This allows for batch processing or
for users to create their own custom environment.
The programs in the QUIP System share a common specification language that allows users to
describe extremely complex combinations of logical conditions and numeric expressions. This
language is compiled in memory at run-time, so all programs run very quickly on large data files.
This guide provides an introduction to QTAB, the cross-tabulation component of the QUIP
System. It aims to teach beginners the basics of QTAB, and to provide a reference for more
experienced users.
The following conventions are used throughout this document:

Angle brackets: <...> A mandatory item to be specified.
Square brackets: [...] An optional item to be specified.
Vertical bar: ..|.. Only one of the listed items should be specified.

QTAB keywords are in uppercase and the minimum abbreviation for each in bold uppercase,
lowercase letters are used where a number should be entered (e.g., WIDTH nnn).

1 THE SPEC FILE
QTAB instructions are called specifications, or "specs" for short. QTAB reads the specs from an
ASCII text file called a spec file. The spec file contains all the information the program needs to
process the data and produce the desired output.
Specs must be written using a text editor that can write files that do not contain any embedded
control codes or tab characters. Case is ignored for specs and keywords, but is preserved in
annotation, tags, dictionary definitions and literal strings within quotes.
Column position on the text line is significant in many QTAB instructions: Table definitions and
post processing instructions use column position to identify certain fields and a specific column
is used to separate specifications from label text in variable definitions. Spaces are used as
separators between keywords, but the number of spaces does not matter. Tab characters are
not allowed in specifications and are treated as non-blank characters in label annotation.
Any line that begins with an asterisk (*) in column 1 is treated as a comment. It will print in the
spec listing but otherwise be ignored by the program, as will any completely blank line.
QTAB compiles the spec file in a single pass so forward references are not allowed. Items such
as a numbersets, post processing instructions and dictionary entries must be defined before
they can be referenced elsewhere in the spec file.
After a spec file has been written, QTAB may be run from a command prompt by entering:

QTAB <filename> [command line directives|parameters]

QTAB will read the spec file named on the command line and compile it, checking for syntax
errors and writing a listing file back to disk as it proceeds. If no fatal errors are found, QTAB will
tabulate the data file(s) and write out a report file containing the tables generated and optionally,
a table of contents file, both of which can be printed or viewed with a text editor.

QTAB User's Guide Revision: 21.1.5 Page 2

1.1 Essential Elements
Every QTAB spec file must contain at least four basic sets of specifications, which should
appear in the following order in the file:
DATA DIRECTIVES: Instructions that describe the input (data) and output (listing,

tables and contents) files.
GLOBAL LEVEL OPTIONS: Instructions and parameters that apply to an entire QTAB run.
VARIABLE DEFINITIONS: Sets of instructions that tell QTAB what to count and how to label

rows, columns and tables.
 TABLE DEFINITIONS: Instructions that tell QTAB which variables to cross-tabulate by

each other.
Other elements, such as post-processing instructions, numbersets and weights are placed with
the variable definitions. Dictionaries may appear anywhere before the table definitions section.
All variables defined in a spec file are processed during the compile phase of a QTAB run, but
data is only tabulated for those variables actually referenced in the table definitions.

1.2 Keywords and Statements
Most options in QTAB are specified using keywords separated by spaces. Many keywords
accept options which follow after one or more spaces. Other keywords, such as those used in
the specifications area of variable definitions, are followed immediately by their parameters.
When multiple options or parameters are used, they are separated by either commas(,) or semi-
colons(;) depending on the keyword, and with no spaces allowed in the option list.
A QTAB statement is a line of text beginning with a keyword in column one and often followed
by a name and/or various options.
An END statement begins with the keyword END in column one and contains no other text.
The sections and elements of a QTAB spec file begin with a statement. Some may be entirely
defined in a single statement line while others may contain many lines of specs, terminated by
an END statement. When the end of one element is clearly defined by the statement beginning
the next element, an implicit END statement is generated, and the physical END statement may
be omitted, as, for example, between variables or post processing instruction sets.
An explicit END statement must always be used to separate major sections of the spec file,
such as to mark the start of the table definitions, to end a dictionary, and before and after any
part of a spec file controlled by such as #INCLUDE or STOPSPEC.

2 DATA DIRECTIVES
Data directives identify the input data files and the output files created by QTAB. Each data
directive begins with a keyword followed by the file name.

QTAB User's Guide Revision: 21.1.5 Page 3

2.1 File Names
QTAB accepts the following data directives:

INTAP[n] <[path\]filename.ext (lrecl> [V] Input data file.
LISTING <[path\]filename.ext> Job spec listing file.
REPORT <[path\]filename.ext> Output tables file.
CONTENTS <[path\]filename.ext> Table of contents file.
COMPUTE <[path\]filename.ext> Compute file (see below)
RECOMP <[path\]filename.ext> Recompute file (see below)

If no LISTING file is specified, QTAB will create one in the current directory, generating a unique
name for it. All other output files are created only if that data directive is present in the spec file.
If no explicit path is given, QTAB always reads from and writes to the current directory. QTAB
accepts any valid DOS or Windows long file names with no embedded spaces.
INTAP names an input data file followed by a left parenthesis and the record length in bytes.
Record length is assumed fixed unless specified as variable, meaning that each consecutive
block of bytes of the specified record length is considered a separate record and QTAB checks
that the file size is a multiple of the record length, issuing a warning if it is not.
The letter "V" after the record length indicates variable length records, each of which must be
terminated by an end-of-line marker (Carriage Return-Line Feed). For variable length records,
the specified record length must be equal or greater to that of the longest record in the file, not
counting the 2 bytes for the CR-LF.
 A QTAB run may have any number of INTAP files (usually numbered INTAP1, INTAP2, etc.).
Data files are processed in the order they appear in the spec file, regardless of the numbering
used for the INTAP keywords. All files should have the same record length specified.
If no INTAP is specified, QTAB will issue a warning but will otherwise run normally, generating
empty table shells if a report file is called for.

2.2 Compute and Recompute
If a COMPUTE data directive is given, QTAB writes out a file containing the raw table counts in
a binary format. The tables can be rerun from that file by naming it in a RECOMP data directive
and calling for the RECOMPUTE run option (see section 3.2).
In a recompute run, the names, sequence and dimensions of tables must not be changed.
Subtotals (see section 6.1) may not be added or removed, but the actual subtotal specifications
can be changed and will be recomputed. Any text labels and table options may be changed.
The #A array field operator (see section 6.3.3) should never be used in recompute runs.

2.3 Command Line Data Directives
Data directives may optionally be specified on the command line using the following switches:

/C=<[path\]filename.ext> COMPUTE file name
/I[n]= <[path\]filename.ext> INTAP file name
/IL[n]= <nnn> INTAP record length
/L=<[path\]filename.ext> LISTING file name
/R=<[path\]filename.ext> RECOMP file name
/S[n]=<[path\]filename.ext> SPEC file name
/T=<[path\]filename.ext> REPORT (tables) file name
/TC=<[path\]filename.ext> CONTENTS file name

QTAB User's Guide Revision: 21.1.5 Page 4

Multiple data directives are separated by spaces (e.g., /X=xx /Y=yy /Z=zz). The total length of
the command line (including program invocation) may not exceed 127 characters. Up to 4 spec
files may be listed on the command line; they are read in numeric sequence and treated as a
single spec file. Data directives contained in the spec files always override those provided on
the command line.
Up to 4 INTAP files may be specified for a run, with a matching record length for each (/ILn=).
Variable length record files cannot be specified in command line data directives.

3 GLOBAL OPTIONS
Global options apply to an entire QTAB run. Most are specified on a RUNOPS line which must
appear immediately after the data directives at the beginning of the spec file. Most run options
will default to a specific setting unless they are explicitly defined otherwise.

3.1 Address Mode
QTAB requires a data address mode to be defined before any specifications can be processed.
The SETUP ADDRMODE statement determines whether specs refer to 1-byte ASCII characters
or the 2-byte column-binary format used mostly in marketing research. It also specifies whether
the data are addressed using card/column or direct offset notation.
The concept of the address mode is fundamental to understanding how QTAB processes data:
The address mode determines how the program interprets the specification of data locations
and their contents in the remainder of the spec file. For more on how ADDRMODE affects data
addressing, see section 5.1.1.
To set the address mode, use one of the following statements at the beginning of the spec file:

SETUP ADDRMODE B Column-binary data addressed by card and column.
SETUP ADDRMODE C Character data addressed by position in record.
SETUP ADDRMODE D Character data addressed by card and column.
SETUP ADDRMODE E Column-binary data addressed by position in record.

If address mode is not explicitly stated, QTAB defaults to ADDRMODE B (column-binary data,
card/column addressing).

QTAB User's Guide Revision: 21.1.5 Page 5

3.2 Run Options
Run level options are specified on a line beginning with the keyword RUNOPS. Options are
invoked by keywords separated by spaces, some of which may be followed by one or more
parameters. RUNOPS line options are listed below with their parameters.
EXCEL Delimit cells with tab characters (See section 12.2 for details).
ERROR ALL|nn Set level for warning or error messages to prevent QTAB from

running after compilation. ALL forces an end if any messages
were generated. Level 4 allows warning messages.

FOOTPOS Position footnotes one line after the last line instead of at the
bottom of the last page of each table.

LENGTH nnn Maximum page length nnn lines. Default is 63.
LOTUS Output individual tables as separate files (See section 12.2).
NAME C|R|L|A Print table name Center/Right/Left/Alternate sides of each page.

Default is don't print.
NOCENTER Do not center tables on the page (all tables, titles and footnotes

will be left-justified). Default is centered within page width.
NLZ Do not print a zero before the decimal point for numbers less than

1.0 (e.g., print ".5" instead of "0.5"). Default is to print left zero.
NOCHECK Do not check for spec references beyond the input data file record

length (note that this can cause the program to crash at run time if
locations outside the data area are actually accessed).

NOCONTINUED Do not print "(Continued)" under the table name on continuation
pages after the first page of a table. Default is to print.

NOREPEAT Do not reprint the % base row when continuing a table to a new
page. Default is carry % base.

NOWTMSG Do not show individual warning messages for each case with a
record level weight that evaluates to zero (see section 5.3).

PAGENO R|L|A[,nnn] Number pages at the top Right/Left/Alternate side, starting
optionally with page nnn. Default is no page numbering.

RECOMPUTE Use the compute file named in the RECOMP data directive as
input instead of tabulating the data (see section 2.2).

TCONT Print the table of contents only (must specify CONTENTS data
directive, see section 2).

TEST SPECS|nnn|ALL Stop after testing specs/Run only on first nnn cases/all cases.
Default is run ALL cases.

WIDTH nnn Set the page width for output. Default is 132.

The STAR and ZCELLS table options (see section 7.4) may also be specified on the runops
line, in which case they will apply to all tables in the current run.

QTAB User's Guide Revision: 21.1.5 Page 6

3.3 Run Titles
Run titles, a block of text that will appear at the top and/or bottom of every page of output, may
be specified by a RUNTITLES statement, followed by the desired text, and terminated by an
END statement. The format is:

RUNTITLES TOP|BOT R|L|C
 Text goes here
 (as many lines as needed)

END

The parameters indicate whether the text is to be printed at the top or bottom, and at the right,
left or center of each page. Two separate RUNTITLES sections may be specified in a spec file:
one for the top, and one for the bottom of each page.

3.4 Summary Row and Column Labels
In addition to the rows and columns explicitly defined in the specs (detail rows and columns),
QTAB always computes several summary rows and columns for each table: total cases, number
answering, number not answering, total mentions (total number of responses tabulated in all the
rows or columns of the table). Rows and columns outside the table area are also reserved for
table-level statistics. Summary rows and columns are only printed if called for using the SUM or
STATS keywords in a table definition (see section 7.4). By default, QTAB assigns the labels
listed in the table below to these summary vectors or table-level statistical vectors.
The summary vector names and their default labels are:

Vector Name Row Label Column Label
Total TT TOTAL TOTAL
No Answer NA NO ANSWER NA
Total Answering TA TOTAL ANS TA
Total Mentions TM TOTAL MENT TM

Mean MN MEAN MEAN
Standard Deviation SD STD. DEV. SD
Standard Error SE STD. ERR. SE
Variance VR VARIANCE VAR
Median MD MEDIAN MEDN

The following labels are applied to the vectors named when alternate print options are called for
with the SUM table option, as described in section 7.4.4:

TT - Unweighted cells TU BASE BASE
TM - at end of table MB SIGMA SIGMA

Default row labels may be changed in a LABELTEXT section, starting with a LABELTEXT
statement and is terminated by an END statement. Definitions begin with the vector name in
cols. 1-2 and text starts in col. 5. Continuations on a 2nd line are indicated by the letter C in
column 4. There is no limit on width, but at print time, text continuing past the stub width for any
table will be truncated. The following example shows the use of LABELTEXT:

LABELTEXT
 TT Total Respondents
 TM Total Mentions
 MB Total Mentions when printed
 MB Cat the bottom of tables

END

QTAB User's Guide Revision: 21.1.5 Page 7

4 VARIABLE DEFINITIONS
Variables are sets of instructions that define the rows or columns of a table and supply the text
labels to identify them in the report. Every QTAB variable begins with a VAR statement giving it
a unique name and providing basic information about the class of variable and text options. All
spec lines following the VAR statement, up to the next END, VAR, NS, MACRO or PP
statement, are used to define the cell contents, labels and title information for that variable.
Each spec line of a variable specification is divided into two distinct parts: the left-hand side is
used to specify cell contents (specs), while the right-hand is used to provide text annotation for
the cells or title information for the variable. The two parts of each spec line are separated by
the "spacer column" in the Label parameters of the VAR statement.
There are three basic classes of variables:

HEADER variables: Define the contents and the labels for the columns of a table
(Headers are sometimes called "Banners").

STUB variables: Define the contents and the labels for the rows of a table.
BASE variables: Define filters which apply to the entire contents of a table.

While the same specification language is used to define cell contents, cell labels are defined
differently for each class of variable.

4.1 The VAR statement
The VAR statement begins with the keyword VAR followed by name up to 8 characters long, the
LABEL keyword and the label options which identify the class of variable and spacer column.

 VAR <name> [TYPE S] LABEL <type>|<Equate>[,equate,...] [PP <set1[,set2,...>]

The variable name may use any printable ASCII characters. Case is ignored. Both variable
class and spacer column (section 0) must always be specified, either explicitly or implicitly
through an Equate to another variable (section 0).
Keyword "TYPE S" forces the variable to be single valued: If used, a case will only be counted
once, in the first row or column for which it meets the conditions specified, regardless of how
many subsequent rows or columns it would qualify to be counted in.
The PP keyword indicates that post processing (see section 8) is to be executed on tables using
this variable. The PP keyword must be followed by the names of one or more post processing
sets separated by commas.

QTAB User's Guide Revision: 21.1.5 Page 8

4.1.1 Classes of Variables
The three classes of variables are defined as follows:

Header variables: H<ww><N|V><ss>
Stub variables: S[<ww><N|,|R|G>]<ss>
Base variables: B[<ww><N|,>]<ss>

Where the parameters following the class code are as defined as follows:
ww Text width: the maximum width of row labels for stubs or the nominal width of

each table column for headers.
N Normal fixed width text labels.
, (Comma) Same as N, in stub and base variables only.
V Headers only: Indicates variable column widths (see section 4.2.3)
R Stubs only: Indicates that the column following the spacer column for a stub

variable is reserved for ranking level codes (see section 4.3)

G Stubs only: Generates labels automatically using the actual row specifications.
ss Spacer column: The column separating specifications (on the left) from label

annotation (on the right). Contains the codes that describe the annotation lines
for headers and the vertical spacing for stubs.

The spacer column must always be specified, either explicitly or through an equate (see below).
Width and class must be specified for headers. For stubs and bases, labels default to a normal
width of 24 if not specified.

4.1.2 Examples of VAR statements
The format of the VAR statement is illustrated by the following examples:

VAR banner1 LABEL H08V30 A header variable named "banner1" with a nominal
width of 8 characters per column. Column spacing
is variable and text begins in column 31 of each
specification line.

VAR income LABEL S24,16 A stub variable named "income" with an expected
maximum width of 24 characters for the row labels
which start in column 17 of each line.

VAR whybuy L S30R24 A stub variable named "whybuy" whose rows will
be printed in rank order (See section 4.3 below).
For each line, column 24 is the spacer column,
column 25 is reserved for rank level codes and
columns 26 to 54 are used for row label text.

VAR women LABEL B20 A base variable named "women", with cell text
starting in column 21 of each line.

4.1.3 Variable Equates
LABEL options may include "equate" codes telling QTAB that specs or labels are not defined in
this variable, but should be copied from some other variable previously defined in the spec file.

QTAB User's Guide Revision: 21.1.5 Page 9

Each equate code must be followed by the name of a valid variable with no spaces in between.
Multiple elements may be equated, separated by commas.
The equate codes are:

E<var> Copy all label text, except for titles and footnotes, from the named
variable to this variable.

T<var> Copy title text from the named variable to this variable.
F<var> Copy footnote text from the named variable to this variable.
P<var> Copy post processing (see section 8) from the named variable to this

variable.
Z<var> Copy both title and footnote text from the named variable to this variable.
Vnn;<var> Vector offset: copy the vector definitions from the named from the named

variable to this variable, offsetting all specifications by nn data columns.

The following examples illustrate variable equates:
VAR attr2 LABEL Eattr1 A variable named "attr2" of the same class and

using the same labels as a variable named "attr1",
previously defined.

VAR c1 L V2;a1,Eb2 A variable named "c1" of the same class and using
the same labels as variable "b2", with specs copied
from variable "a1", incrementing all data addresses
by 2 columns from those specified in "a1". Both
"a1" and "b2" must have been previously defined.

VAR c1 L V-10;a1,Eb2,Pc3 Same as the previous example except that all data
addresses are decremented by 10 columns and
post processing is copied from variable "c3".

Equates copy an specs or label text as a whole unit, with the only change allowed a common
column offset that affects all specifications in the variable. For a more flexible way to generate
many similarly structured variables from a common template, see section 10, Macro Templates.

4.2 Labels and Table Annotation
Annotation for QTAB tables is entered into the spec file exactly as it will be printed in the final
output. This allows existing text (from questionnaires, code lists, etc.) to be used for labels and
titling. QTAB treats all text to the right of the spacer column of a variable as annotation. Codes
in the spacer column tell what the annotation applies to and what formatting options to apply.
A spec line in a variable definition with no annotation in the spacer column or beyond is ignored
for labeling purposes. To generate a blank line, there must be a code in the spacer column or a
non-printing character (such as a tab character) in the text area.

4.2.1 Titles and footnotes
All variable lines with a "T" or a "Q" in the spacer column are considered titles and print at the
top of the table, above the header annotation. All lines with an "F" in the spacer column are
considered to be footnotes and will print after the last row of the table.

QTAB User's Guide Revision: 21.1.5 Page 10

Title and footnote lines may be as wide as the page width specified in the run options and print
exactly as entered, in the order they appear in the variable definition. Titles and footnotes are
centered on the page unless the NOCENTER run option is used to left-justify (see section 3.2).

Each variable may have up to 10 lines of titles and 10 lines of footnotes.

4.2.2 Stub Annotation
Stub variables define the rows of a table and provide label text for each row. Label annotation
is entered following the spacer column just as it is to appear at the left margin of printed tables.
QTAB checks the number of rows labeled against the number defined in the specification part of
all stub variables; if they do not match, a warning message is issued and tables referencing that
variable will be skipped if the error level (see section 3.2) is set to allow warnings.
Labels for the rows of data in a table are identified by the following codes in the spacer column:

(blank) Initial line of text for this row (if the rest of the line is not blank).
A Skip an extra line after this row.
B Skip an extra line before this row.
C Text continuation line for the same row as in the previous line.
U Text continuation printing on the same line as the previous one (QTAB

issues a CR without a LF). Used to underline or double-print.
D[(nn)] Do not print this row, [optionally, nn rows beginning with this one].
E Eject the page after this row (formfeed after).
P Eject the page before this row (formfeed before).
V Omit the normal blank line between this row and the next row.
Z Override zero suppression for this row, i.e., print the row even if there is

no data and the ZEROSUP option applied to the table (see section 7.4).
Subtitles are lines of label annotation that do not correspond to rows of data in a table and are
identified by the following spacer codes:

N Subtitle with a page eject (formfeed) before it
S Subtitle with an extra line skip before it
X Ordinary subtitle text
Y Subtitle with an extra line skip after it

All summary labels described for base variables (see section 4.2.4) may also be used in stubs.
Text wider than specified in the VAR statement (see section 4.1.1) causes a warning message.
If the error level allows warnings (see section 3.2), subtitle labels wider than the nominal width
specified may be used to extend annotation into the body of a table between the data rows.

4.2.3 Header Annotation
Header variables (sometimes called "Banners") define the columns of a table.
Label parameters N or V in the VAR statement (see section 4.1.1) determine whether the detail
columns will be spaced at a constant or a variable width. Summary columns (see section 3.4)

QTAB User's Guide Revision: 21.1.5 Page 11

always print at the nominal column width specified by the text width parameter and cell contents
are always right-justified within each column.
Header annotation is entered exactly as it should be printed over the body of the table and need
not be aligned with the cell contents. Up to 10 lines of text may be specified and may extend
beyond the right edge of the table body. For normal (constant) spacing, the table body width is
determined by the number of columns to print.
For variable spacing, the last line of the header label annotation must be a width mask template
(see spacer code "W" below) that indicates the exact placement of each detail column and
determines the width of the table body. When variable spacing is used, the number of columns
specified is checked against the mask and a warning issued if they do not match.

The following spacer codes may be used in header variables:
(blank) Normal line of text (if the line contains any label text)
H Normal line of text (allows a blank line to appear in the annotation)
U Line to be printed on the same line as the previous one (QTAB issues a

CR without a LF). Used to underline or double-print.
W Width mask for variable width headers. Equal signs (=) are used to mark

where the right edge of each column is to be positioned. The last column
is marked by a colon (:). No other text is allowed.

4.2.4 Base Annotation
Base variables provide filters that apply to tables overall. Only titles, footnotes and summary
row annotation are printed for bases, so text width is not needed and will be ignored if specified.
Base variables may specify annotation for the table summary rows to be printed instead of the
default or LABELTEXT labels (see section 3.4). These are indicated by an asterisk (*) in the
spacer column followed by a letter code identifying the applicable summary row. These are
technically titles, so multiple lines are used to print multiline labels:

*T TT row - Table Total
*N NA row - No Answer
*A NA row - Total Answering
*M TM row - Total Mentions
*S Subtitle annotation printing immediately before the first detail row.

4.3 Ranking and Rank Levels
QTAB provides for ranking the rows of a table in descending order based on the contents of a
specific column (see section 7.4.3). By default, all rows in the table are ranked in descending
order, but it is often desirable to force certain rows to appear at the top or the bottom of the
table, or to rank sections of a table and rows within those sections. For example, in responses
to open-ended questions, one might want to see all the positive responses before the negative
ones and also to rank individual responses within one or more levels of category nets.
The R parameter in a stub variable definition (see section 4.1.1) tells QTAB that the column
after the spacer column is reserved for a rank level code that provides for nested ranking up to
eight levels deep and further controls whether a row will be ranked or not within each level.
A stub variable must have exactly as many rank codes as there are rows defined, so no rank
code should be assigned to continuation lines or subtitles (see section 4.2.2). When rows are
reordered, subtitles move with the next physical row specified.

QTAB User's Guide Revision: 21.1.5 Page 12

The rank level codes are 1 through 9, 0, A, B, C, D, E, F, where each pair of codes defines a
level within which the odd numbered codes are ranked, and the even numbered codes are not.
Thus, 1 is the code for first level, ranked and 2 the code for first level, unranked; 3 is the code
for second level, ranked, and 4 the code for second level, unranked; E is the code for eighth
level, ranked, and F the code for eight level, unranked.
Rank levels may be visualized as concentric groups of rows that are rearranged as a whole at
the same level. Within each individual group, all the groups at the next level are rearranged,
and so forth. At each level within a group, an even rank code terminates the ranking process so
that that row, and all those following it within the group, will not be ranked. The process resumes
with the next group at a higher level. This means that an odd numbered code can never follow
an even numbered code of the same or higher level.
The following example illustrates the use of rank level codes (specs are omitted):

VAR L S40R16
 1 1st level ranked [01]
 3 2nd level ranked [02]
 5 3rd level ranked [03]
 6 3rd level unranked [04]
 3 2nd level ranked [05]
 5 3rd level ranked [06]
 4 2nd level unranked [07]
 1 1st level ranked [08]
 3 2nd level ranked [09]
 3 2nd level ranked [10]
 2 2nd level ranked [11]

In this example, if [08] is greater than [01] in the rank column, rows 8-10 would print as a group
before rows 1-7, while row 11 would remain at the end of the table, regardless of its contents.
Rows 9 and 10 will print in rank order following row 8. Within the group of rows 1-7, if [05] is
greater than [02], rows 5-6 would print as a group before rows 2-4, and row 7 would appear at
the end. Rows 3 and 4 will print in rank order following row 2.

5 THE QUIP SPECIFICATION LANGUAGE
Specifications describe the conditions that must be met for a case to be counted in a vector.

5.1 Data Specifications
When tabulating data, QTAB reads one record at a time into a work area and applies the specs
to the contents, incrementing counts and cumulating events for vectors that meet the specified
test conditions as it proceeds sequentially through the data file. This section describes how to
use the QUIP specification language to define conditions and events directly.

5.1.1 Addressing Data
QTAB addresses data using absolute column locations within each record. The location may be
specified directly as the number of columns offset from the beginning of each record or using
the card/column notation favored by many statisticians and marketing researchers. Data may
also be defined in character mode (e.g., ASCII), where each column occupies a single byte, or
in column-binary mode, where each column occupies two adjacent bytes.
QTAB provides four addressing modes to handle the possible combinations (see section 3.1).

QTAB User's Guide Revision: 21.1.5 Page 13

In address modes C and D, a column occupies a single byte, while in address modes B and E,
a column occupies two bytes. Address modes C and E use direct offset notation, so in address
mode C, column x is byte x of the record, while in address mode E, column x consists of the two
consecutive bytes 2x-1 and 2x.
In card/column notation, the column number within the card is a two-digit number ranging from
01 to 80 and must be preceded by a card number. The first 80 columns of a record are written
as 101 through 180, the next 80 columns as 201 through 280, and so on. The data in columns
180 and 201 would be addressed as columns 80 and 81 in direct offset notation.
QTAB interprets data locations according to the current address mode automatically. Any data
type can be used in any address mode but even-numbered bytes cannot be addressed directly
in column-binary address modes since addresses correspond to 2-byte column locations.

5.1.2 Fields and Numbers
A data address followed by one of the codes listed below will be treated as a field or a number.
QTAB recognizes the following field or numeric codes (either upper or lower case):

An Column number or field, 'n' digits or columns long, where column depends on
address mode. An translates to Bn when the address mode is B or E, and to Cn
when the address mode is C or D (see section 3.1).

Cn Character number or field, 'n' digits or characters long
Bn Column-binary number or field, 'n' digits or columns long
Xn Extended column-binary number, 'n' digits long, where an 'X' punch repeated 'n'

times represents 10 to the power n (e.g. for X2, 'XX' = 100).
H Short, signed integer (sometimes called a 'halfword')
I Short, unsigned integer
F Long, signed integer (sometimes called a 'fullword')
G Long, unsigned integer
Q Single-byte, signed integer (sometimes called a 'quarterword')
R Single-byte, unsigned integer
E Single-precision floating point (occupies 4 bytes)
D Double-precision floating point (occupies 8 bytes)
Pn Packed decimal number 'n' digits long; 'n' is an odd number between 1 and 15

Fields (codes A, B, C, X) may be from 1 to 15 characters long for numbers or field operations.
Column-binary fields (A, B, X) may be up to 80 columns long and character fields (A, C) may be
up to 250 bytes long when testing for their being blank or non-blank.
Leading blanks are allowed in numeric fields, embedded blanks and non-numeric characters are
not, except for a leading minus sign to indicate a negative value. For situations when numeric
fields may contain non-numeric values, codes A, B, C and X may be followed by a suffix
indicating how to handle special conditions: "B" indicates that blanks are to be given the value
zero, and "E" indicates that any non-numeric value be given the value zero (e.g., 101be2
represents a 2 column column-binary field in which any non-numeric entry would translate to 0).
Numeric fields of data type A may have an additional suffix "X" that works like the data type X
(extended column-binary) for either column-binary of ASCII data. In ASCII data, an X-punches

QTAB User's Guide Revision: 21.1.5 Page 14

are represented in data by minus signs is used in data for X-punches, so for a field defined as
21AEX3, an entry of "---" would translate to 1000, "--1" to zero, and "-10" to minus 10.

5.1.3 Columns and Punches
An address with no field code identifies a single column that contains "punch" data and may
contain only the values that correspond to the punches in a column of a Hollerith (or IBM) card.
The punches are 1 through 9, 0, X and Y, in that order. In ASCII modes, the X punch refers to a
minus sign (-) and the Y punch to an ampersand (&) in the actual data.
In column-binary data, a column may contain multiple punches in any combination. This allows
as many as 12 different codes to be stored in a single 2-byte column in column-binary data, as
compared to the 12 bytes that would be required to store the same information as ASCII. For
this reason, column-binary is often used for data sets containing many multiple response items.

5.1.4 Literals, Constants and Numeric Expressions
Literals are constant values used in comparisons and usually follow a logical operator. They are
indicated in specs by single quotes. QTAB treats literals differently depending on the context in
which they appear. In column tests, they are punch lists; in numeric tests, literals are numeric
values and in field comparisons they are character strings. In some situations, multiple literals
may be specified within a pair of single quotes (see section 5.2).
Constants are values used in numeric expressions and are indicated by prefixing a number by
the letter "K", thus K132 represents the constant value 132.
Numeric expressions are built from numeric fields and constants using the four standard
arithmetic operators: +, -, * and / for addition, subtraction, multiplication and division.
Parentheses () may be used to provide precedence among operators (up to 15 levels).
QTAB converts all numeric values internally to double-precision for evaluation or computation,
so spec writers do not need to be concerned with mixing data types or multiplying values to
preserve their precision.

5.2 Counting Cases
A case is counted by QTAB when specified conditions test true. Field and numeric tests require
an operator. Punch tests apply to single columns and no operator is used. Complex conditions
may be created by using Boolean operators to combine simple tests.

5.2.1 Field and Numeric Tests
The following operators test a field for the conditions indicated:

B Test field for being Blank (blank means that the field contains all spaces
for ASCII data, all nulls for column-binary data).

P Test field for being Packable (the field contains a valid numeric value).
Q Test the field for being either Packable or Blank.
U Test the field for being Unpackable (the field is not a valid numeric value).

QTAB User's Guide Revision: 21.1.5 Page 15

The following operators test the numeric value of a field against one or more number literals:
='nn[;mm]' Equal to a numeric value. A maximum of 4 numeric values may be

specified for the literal, separated by semi-colons.

G'nn' Greater than or equal to a numeric value.
L'nn' Less than or equal to a numeric value.
>'nn' Greater than a numeric value.
<'nn' Less than a numeric value.
R'nn;mm' Falls within a numeric Range (from;to).

The following operator compares the contents of an ASCII field to one or more string literals:
@[-n]'mm' Character string compare [optionally for "n" contiguous fields] (used with

ASCII data only). Accepts up to 4 literals separated by semi-colons, all of
which must be of the same length as the field being compared.

The following operators test the value of an ASCII field against the ASCII string value of literals
(the relative value of an ASCII string is determined by its sort sequence):

@G'aa' Greater than or equal to an ASCII string value.
@L'aa' Less than or equal to an ASCII string value.
@>'aa' Greater than an ASCII string value.
@<'aa' Less than an ASCII string value.
@R'aa;bb' Falls within a Range of ASCII string values (from; to).

The sense of all field and numeric tests may be reversed (negated) by the "Not" operator N.
For field and numeric tests, the N is placed immediately in front of the operator. For the field
compare test, the N is placed immediately before the literal, outside the quote. For string value
tests, the N is placed between the @ sign and the comparison operator.

5.2.2 Punch Tests
Punch tests are specified by a column address followed immediately by a literal containing a list
of punches to be tested for. The list of punches is called a punch mask and the test is satisfied
if any of the punches in it are present in the column. A range of consecutive punches may be
specified using a hyphen (-), so '1-Y' is equivalent to '1234567890XY' and '1-39-X' is the same
as '12390X'. Note the order of punches in the mask (see section 5.1.3). Punch tests may test
for the absence of punches by prefixing either the literal or the punch mask itself with an N.
For column-binary data only, a column may be tested for the number of punches it contains by
using the tally operator:

T<op><n>'pp' Where <op> is a numeric comparison operator (=,<,>), n is a
number from 0 to 12 and 'pp' is a list of the punches to be counted
in the tally.

QTAB User's Guide Revision: 21.1.5 Page 16

5.2.3 Boolean Operators and Compound Tests
The following Boolean operators are used to combine conditions into compound tests:

& Logical AND: The result is true if, and only if, both conditions are true.
(Ampersand)

! Logical OR: The result is true if either condition, or both, are true.
(Exclamation point)

() Parentheses: The entire expression within a matching pair is treated as a
single condition or value in a Boolean or arithmetic expression.

{ } Braces: Allows an arithmetic expression to be used in a test as if it were
a single numeric field in a test condition.

The maximum length of a QTAB specification is 500 bytes, and expressions may be nested in
parentheses up to 15 levels deep, so very complicated conditions may be specified. There is no
Boolean "not" operator, so compound expressions cannot be negated as a whole.
Any numeric field or arithmetic expression that is not generate a valid number will cause the
entire specification in which it appears to immediately evaluate as false.

5.2.4 Examples of Test Conditions
The following examples illustrate data tests using the QUIP specification language. Note that
tests on single column fields and punch tests can almost always be used interchangeably, but
the punch tests are often easier to specify and are more readable:

11'125' Test for punches 1, 2 or 5 in column 11
11C1R'1;2'!11C1='5' Same result, using value tests
11C1R'1;5'&11N'3;4' Same result, different logic
21C5='125' Test a 5 byte field for the numeric value 125 (the test will

be true for 125, 0125, 00125)
21C5@'00125' Test a 5 byte field for the string "00125" (the test will be

false for " 125" or " 0125")
21C3B Test for a 3-column field being blank
21C3P Test for a valid number in a 3-column field
101'1-8' Test for the presence of punches 1 through 8 in column

(any combination will satisfy this in column-binary data)
101N'1-8' Test for the absence of punches 1 through 8 in column

(any punches other than 1-8 may be present)

101'N1-8' Same as the preceding
101T=1'1-8' Test for the presence of exactly 1 punch in the range 1-8 in

column (column-binary data only)
101T>2'1-8' Test for the presence of more than 2 punches in the range

1-8 in column (column-binary data only)
{21C3+24C3}='100' Test that the sum of the values in the 3-column fields

beginning in 21 and 24 is equal to 100

QTAB User's Guide Revision: 21.1.5 Page 17

{21CB3+24CB3}='100' Same as above, but set the value to a blank field to zero
so that it does not cause the entire specification to fail.

21C3@-3'100' Test for the character string "100" beginning in columns
21, 24 or 27

21C1@R'A;Z' Test for any uppercase letter in a 1 column field
121X2='100' Test for a value of 100 in a 2 column field in column-binary

data (represented by an X punch in both columns)
121AX2='100' Same as above, but for either column-binary or ASCII

data, depending on the address mode

5.3 Weights
A weight is a numeric value assigned to each record in a data set that is used as a multiplier
whenever that record is counted and is used for such purposes as to adjust counts to known
population characteristics or to tabulate usage rather than cases.
In addition to volumetrics, which are weights applied to individual table vectors (see section 6.1),
QTAB allows table level weights, defined in a WEIGHT statement and applied to tables by a
table definition option (see section 7.4). The statement begins with the keyword WEIGHT or
WT, followed by a name of up to 8 characters and a valid numeric field, constant or numeric
expression (see section 5.1.4):

WEIGHT <name> <expression>
A weight value specified as a character or column-binary numeric field can be adjusted for
implicit decimal places by adding a period and the number of decimals by which to adjust the
value entered in the field. This is equivalent to dividing the value by a constant of ten to the
desired power.
QTAB will stop evaluating an expression if any part does not generate a valid numeric value in
the data. In a weight definition, this will cause the value to be set to zero. Weights that evaluate
to zero will cause a warning message to be displayed on screen and in the spec listing unless
the NOWTMSG run option is invoked (see section 3.2), and a count of zero weights will be
shown in the run statistics at the end of the listing.
Some examples of weight definitions:

WEIGHT adults 171CE3.2 The weight is the value found in the 3 character
field beginning in 171 read as having 2 implied
decimal places, and with invalid values set to zero

WEIGHT wght 171ce3/k100 Defines the same weight as above
WT K k20 The weight is a constant value of 20

6 SPECIFYING ROWS AND COLUMNS
The left-hand side of each line in a variable definition is reserved for the specifications (specs)
that determine who and what will be counted in the cells of the variable. In stub variables, the
specs define the row vectors and in header variables, column vectors. At a minimum, every cell
in a table contains the count of cases that meet the conditions specified by the row and column
vectors that intersect at that location.

QTAB User's Guide Revision: 21.1.5 Page 18

 Each individual specification begins in column 1 of a line and may extend up to, but not into, the
spacer column. Specifications too long to fit in the available space may be broken and wrapped
to the next line with a backslash (\). Embedded blanks and tabs are not allowed.
Specs may be preceded by a tag by which the vector may be referenced in nets and subtotals
(see section 6.3) and by punctuation codes that affect how the cells will print (see section 6.6).
Base variable specifications consist of a single condition that applies as a filter to all the cells of
a table, so they are not considered in the remainder of this section.

6.1 Volumetrics
In addition to the specification of who will be counted, each individual vector of a stub or header
variable may specify a numeric value that determines what will be counted, called a volumetric
or event. The volumetric is specified after the test condition for a vector by a numeric field or
expression following a semi-colon (;).
When volumetrics are used, QTAB can tabulate both case counts and the event totals for each
cell of a table simultaneously. If a weight is also applied to the table, as many as four separate
counts may be tabulated for each cell: weighted and unweighted case counts and weighted and
unweighted event totals (see section 7.3).
The following examples illustrate volumetric definitions:

121C2P;121C2 Cumulate the values in 121C2 among those cases that
have a valid numeric value in that field.

;121C2*121C2 Sum the squares of the values in 121C2 for all cases.
;(12CE1+13CE1)/K2 Sum the means of the values in 12C1 and 13C1, with non-

responses counted as zero values, for all cases.

6.2 Generated Vectors
QTAB provides several shorthand methods for generating a number of row or column vectors
with a single spec.
In stub and header variables, in a comparison test against single values, strings or punch
masks, the literal definition may contain a list of items separated by commas. Each item in the
list generates a separate row or column, as if a series of consecutive specifications had been
written, one for each item in the original list.
A list consisting of consecutive integers or punches may be generated even more succinctly by
indicating the range to be tested by means of a colon (:) in the literal definition.
If a volumetric is specified after a test using a literal list, that event is cumulated for each of the
vectors generated by the list. Vectors must be specified on separate lines if different events are
needed.

QTAB User's Guide Revision: 21.1.5 Page 19

Boolean operators should never be used with lists of literals as the results are unpredictable.
The following examples illustrate lists of literals.

101'1,2,3,4,5,6,7,8' Generate 8 vectors: the 1st tests for punch 1, the 2nd for
punch 2,...the 8th for punch 8

101'1:8' Same as the preceding, specified as a range of punches
101'1:8,N1-8' Generate 9 vectors: the first 8 as above, the 9th vector will

count all cases not included in the first 8
101C1='1:8' Generate 8 vectors: the 1st tests for value 1, the 2nd for

value 2,...the 8th for value 8
101C2>'1:8' Generate 8 vectors: the 1st tests the value in a 2 character

numeric field for being greater than 1, the second for being
greater than 2,... the 8th for being greater than 8

101C1@-4'A,B' Generate 2 vectors: the 1st tests for the character "A" in
columns 101 through 104, the 2nd for "B"

6.3 Value, Range and Array Field Operators
QTAB provides three special operators that may be used in stub variables only to generate an
entire series of row vectors based on the contents of a numeric field or expression, optionally
with a set of associated labels.
The syntax and usage of the three operators are similar. Each must appear before any other
specs (except for a tag) on the line. When any of these operators is used to specify rows in a
variable, the associated label function may be used to generate labels for those rows. If the full
field operator definition is followed by a specification for a condition test or event, these will be
applied to every row generated by the field operator.
Each specification begins with the field operator followed by the definition of the source of the
distribution and the scope of the distribution as described in the individual descriptions below.
When used to generate associated labels, the same keyword is used in the text part of the line,
with the # sign in the space column. Labels may optionally be right justified at a specified
margin from the left edge of the table stubs.

6.3.1 The Value Field Operator
The value field operator #V generates a distribution of integer numbers in ascending sequence
and, optionally, the corresponding labels. The format is:

#V<field>'pp;qq' [#V'nn[,mm]']
Where pp and qq are the beginning and end of the distribution range on the field, nn is the
number of rows generated and mm the right margin for label text. Range Field Operator

6.3.2 The Range Field Operator
The Range field operator #R generates a distribution on consecutive ascending numeric ranges
and, optionally, the corresponding labels. The format is:

#R<field>'a;b;c;...n' [#R'nn[[,mm],dd]']
Where a, b, c,... are the lower bounds of the ranges against which the field will be tested, and
the last number is the upper bound of the last range (the number of ranges defined is one less

QTAB User's Guide Revision: 21.1.5 Page 20

than there are number in the list), nn is the number of rows generated, mm the right margin for
label text and dd the number of decimal places to be used in the label text.

6.3.3 The Array Field Operator
The Array field operator #A generates a frequency distribution and its associated labels based
on the values found in a numeric field in the data. It is the only QTAB operator for which values
to be tabulated are not specified explicitly. The operator is followed by the field and a literal that
reserves a number of rows sufficient to hold the array of unique values in the distribution. If the
number of unique values found exceeds the number of rows reserved, new values encountered
in the data will be lost, but values matching existing cells will continue to be tabulated. The array
is sorted and printed in ascending sequence. The format is:

#A<field>'nn' #A'nn[[,mm],dd]'
Where nn is the number of rows generated, mm the right margin for label text and dd the
number of decimal places to be used in the label text. Generated labels must be used with
array fields since the values are not known in advance. The distribution is built in memory as the
data are tabulated and cannot be saved for a recompute run (see section 2.2).

 #A111b3'100'111b3r'101;200';114b2 #A'100,10,1'

In this example, each cell generated by the #A operator is filtered by the test: 111b3r'101;200'
and weighted by the value in the field 114b2. The array reserves 100 rows for values. Labels
will print at an indent of 10 spaces from the left margin and will show values to 1 decimal place.

6.4 Nets and Subtotals
Nets and subtotals provide a means for defining rows and columns as logical combinations or
arithmetical expressions of other rows or columns within the same variable. Both nets and
subtotals ordinarily reference other vectors by their position counting from the first detail row or
column defined in the variable.

6.4.1 Tags
Tags provide a means by which vectors can be referenced directly in nets and subtotals, as well
as in post processing instructions (see section 8). Tags are 2 character labels surrounded by
underscores (e.g., _AA_). Case is significant in tags, so _AA_ is not the same as _aa_, but
tags to be referenced in post processing instructions should only use uppercase or numbers.

6.4.2 Nets
A Net is a row or column derived from a list of other vectors in the same variable using Boolean
logic. Nets are counted as the data is tabulated and their counts are also cumulated into the
Total Mentions row or column. Nets apply logic to all cells of a vector including events which
are effective treated as counts rather than volumetrics.
A net definition begins with the keyword NET or NEN, followed within single quotes by a list of
vectors separated by semicolons (;). A range of consecutive vectors is specified by a period (.).
The following describe the net instructions:

NET'<list>' Count those cases that were counted in one or more of the vectors listed
NEN'<list>' Count those cases that were counted in ALL of the vectors listed
ALL Forces a count of all cases, whether or not they are counted elsewhere.

QTAB User's Guide Revision: 21.1.5 Page 21

6.4.3 Subtotals
Subtotals are vectors that are computed arithmetically from the contents of other vectors after
the data has been tabulated and before any percentaging, post processing or print formatting is
performed on tables. They are not counted as the data is tabulated and so are not cumulated
into the Total Mentions row or column. The arithmetic is performed on all cells, so the events
cell of a subtotal is derived using the same formula as the counts cell.
A Subtotal begins with ST followed by an optional pass level in quotes, then an expression
combining other vectors from the same variable and constants, using the four standard
arithmetic operators: +, -, * and / for addition, subtraction, multiplication and division.
Parentheses () may be used to provide precedence among operators (up to 15 levels). A
range of consecutive vectors may be summed by using a period (e.g., ST01.10). Subtotals may
also reference other subtotals and the summary vectors for Total, No Answer, Total Answering
and Total Mentions.
Unless pass levels are specified explicitly, QTAB computes all the subtotals for a vector in the
order in which they appear, in a single pass. Multiple computation passes may be specified by
a pass number in single quotes after the ST and before the expression. Multiple passes should
be specified when any subtotal references another to force the correct computation order.
By default, QTAB computes the row subtotals before the column subtotals for a table, although
that order can be reversed (see section 7.4). When both the stub and header variables for a
table contain subtotals, pass levels should be specified to make sure that results are correct.

6.4.4 Examples of Nets and Subtotals
The following illustrate the use of nets and subtotals:

NET'1;3;5;7' Net vectors 1,3,5 and 7
_D1_NET'_A1_._C1_' Net vectors labeled _A1_ through _C1_
ST1+3+5+7 Add vectors 1,3,5 and 7
_LL_ST(_KK_*K100)/TA Multiply vector labeled _KK_ by 100 and divide the result

by the Total Answering vector
_MM_ST'2'_LL_*_LL_ Multiply vector labeled _LL_ by itself on the second pass

(this will force a second subtotal computation pass)
STK0 A constant value zero (creates an empty vector)
STNA Get the contents of the No Answer vector

The last example is often the easiest way to create a No Answer row or column.

6.4.5 Special Purpose Subtotals
A few special purpose subtotals have very limited applications but provide a solution to some
esoteric problems:
Array maximum and minimum subtotals: STAHI<xx> and STALO<xx>, where <xx> is the initial
vector of an array on a numeric field specified using the #A operator (see section 6.3.3). QTAB
will enter in the F-cell the highest or lowest array value that was counted in each column. Note
that this is the automatically generated stub label, not the count for the value.

QTAB User's Guide Revision: 21.1.5 Page 22

Frequency maximum and minimum subtotals: STFHI<xx;yy> and STFLO<xx;yy>, where xx and
yy are two row vectors. QTAB will enter the highest or lowest frequency found in any cells in
each column between rows xx and yy, inclusive.

6.5 Statistical Subtotals
Basic statistics, including weighted means and medians, may be computed from the rows and
columns of a table. The cell weights (for means and related statistics) or ranges (for medians)
may be defined using numbersets or obtained from the data.

6.5.1 Numbersets
A numberset is a static vector consisting of a list of constant numeric values, Numbersets are
defined outside of variables and are used in post processing instructions (see section 8) as well
as to provide category weights or ranges for statistical distributions.
A numberset is indicated by the keyword NS in column 1, a name, and a series of numbers
separated by blanks. An X may be used instead of a value to indicate a row or columns to be
excluded from computations in statistical subtotals. A backslash (\) may be used to indicate that
the list of numbers continues on the following line.

NS Scale1 1 2 3 4 5 6 7 8 9 10
NS Scale2 -5 X -3.33 -1 0 1 3.33 X 5

6.5.2 Statistical Subtotals Using Numbersets
Statistical subtotals may be used to compute statistics for a distribution using a numberset to
supply the category weights for mean, variance, standard deviation, and standard error.
Medians may also be computed using a numberset to define the lower limit of the ranges that
will be used to compute the median in the cell containing the 50th percentile.
Statistical subtotals on distributions begin with the ST keyword, followed optionally by a pass
level (see section 6.4.3), then the type of statistic, the range of the distribution identified by the
first and last vectors separated by a semi-colon (;), and the name of the numberset providing
the category weights or ranges.
The format for statistical subtotal on distributions using numbersets is:

ST['n']MNaa;zzNSabc Mean on the distribution in vectors aa through zz, with
category weights from the numberset named "abc" and
optionally computed in subtotal pass n

The statistics that may be computed this way are:
MN Mean
VR Variance
SD Standard Deviation
SE Standard Error of the mean
MD Median (interpolated from base of 50th percentile range)
DMD Discrete Median (base value of 50th percentile range)

For means, variances, standard deviations and standard errors, the numberset named must
have at least as entries as there are vectors in the distribution. For medians, there should be at
least one more entry to define the top of the last range. Additional entries are ignored.

QTAB User's Guide Revision: 21.1.5 Page 23

The following examples illustrate statistical subtotals on distributions:
STMN1;20NSwgts Mean on rows (or columns) 1-20 weighted by values in

numberset "wgts"

STSE1;20NSwgts Standard Error of mean on same vectors
STMD1;10NSbounds Median on rows (or columns) 1-10 using the ranges

bounded by the numbers in numberset "bounds"

6.5.3 Extended Statistical Subtotals
The Mean, Variance, Standard Deviation or Standard Error of the distribution of values in a field
or expression may be computed directly from the data by using an extended statistical subtotal
that points to a vector specifying the base count for the statistic. The vector immediately after
the base count vector defines the sum of values (sum of X) as an event, and for VR, SD and
SE, a third vector must follow defining the sum of squared values as an event.

STXMNaa Mean using the condition defined in vector aa as base and the contents of
the event cell of vector aa+1 for the sum of values

STXVRaa Variance using the condition defined in vector aa as base, the contents of
the event cell of vector aa+1 for the sum of values and the contents of the
event cell of vector aa+2 for the sum of squares

STXSDaa Standard Deviation using the same vector information as above
STXSEaa Standard Error of the mean using the same vector information as above

QTAB applies the algorithm without checking the vector contents, so it is up to the spec writer to
make sure that these are correct.
The following example illustrates the use of STX for these statistics (note that all three work
rows specify the same condition, otherwise the two sums might include extraneous values):

 STXMN_AA_ Mean (Base in _AA_, sum in _AA_+1)
 STXVR_AA_ Variance using same values
 STXSD_AA_ Standard Deviation using same values
 STXSE_AA_ Standard Error using same values
 _AA_141c2r'0;90' DBase for mean (N = count of X)
 141c2r'0;90';141c2 DSum of X
 141c2r'0;90';141c2*141c2 DSum of squares (needed for SE, SD, VR)

Medians may be computed using the distributions generated by the value, range or array field
operators (see section 6.3) with an STXMD extended subtotal definition. Four versions provide
options as to how to interpolate the median value:

STXMDBaa Median of a distribution beginning in vector aa and interpolated using the
lower bound of the 50th percentile cell as the Bottom of range

STXMDTaa Median of a distribution beginning in vector aa and interpolated using the
lower bound of the 50th percentile cell as the Top of range

STXMDMaa Median of a distribution beginning in vector aa and interpolated on the
range defined by the midpoints of the cells immediately above and below
the 50th percentile cell

STXMDDaa Discrete median of a distribution beginning in vector aa: the lower bound
of the 50th percentile cell is used as the median value

QTAB User's Guide Revision: 21.1.5 Page 24

The following example illustrates use of medians for a generated array of up to 100 values:
AA#A111c2'100' #A'100,12,0'
F2DKAKSTXMDB_AA_ BMedian (Bottom)
F2DKAKSTXMDT_AA_ Median (Top)
F2DKAKSTXMDM_AA_ Median (Midpoint)
F2DKAKSTXMDD_AA_ Median (Discrete)

Other QTAB extended statistical subtotals compute certain specialized functions such as the
"Reach" measurement used in media research. These are beyond the scope of this guide.

6.6 Specifying Cell Punctuation in Variable Specifications
The PCELLS keyword is used in table definitions (see section 7.4) to indicate which cells to print
and the punctuation to use for them. This can be overridden for individual rows or columns by
specifying punctuation codes before the vector specifications in variables. The cells to which
the codes apply are specified using the names listed in section 7.3, followed by the punctuation
code and the number of decimal places desired.
The punctuation codes used in are:

n Show n decimal places, where n can be from 0 to 3.
.Cn Use commas to punctuate numbers 1,000 or larger.
.Mn Toggle % signs on/off (normally only shown for whole percents).
.Pn Put parentheses around numbers.
.+n Add leading signs to all numbers (not just negatives).
.$n Add leading dollar signs.
K Kill (suppress) cell contents from printing. No decimal places should be specified

Some examples of cell punctuation strings in variables:
F2DK Print F-cell to 2 decimal places, kill Down percents.
F.C2A.M0 F-Cell with commas and 2 decimals, Across percents with no decimals

and percent signs (%) toggled off.
Any cell punctuation may be modified in post processing instructions (see section 8), but any
cells suppressed by the K punctuation code in the variable definition cannot be shown at all.

7 TABLE DEFINITIONS
The last section of a QTAB spec file, after all variables and other elements have been defined,
contains the table definitions that instruct QTAB how to construct tables from the variables and
how to format the output. The beginning of the table definition section is indicated by a TABLE
statement (a line with the keyword TABLE starting in column 1 and no other text) following an
END statement. The table definition section ends with another END statement.
At the very minimum, a table name, a stub variable and a header variable are required to define
a table. One or two base variables may also be specified. Options are specified by keywords
on the table definition line and table titles may also be attached directly to the table definitions.

QTAB User's Guide Revision: 21.1.5 Page 25

7.1 The Table Definition Line
A table definition line consists of a single line divided into two parts: The first 42 columns are
reserved for the names of the table and of the component variables, as shown in the list below.
The remainder of the line, from columns 43 on, lists the table options indicated by keywords and
the associated parameters. A backslash at the end of any line indicates that the list of options
continues onto the next line in the spec file. Text in continuation lines may be in any column.

The required format for a table definition is:
Columns Contents
1 - 8 Table name (may include blanks)
9 - 10 Table type (for derived tables only, see section 7.5)
11 - 18 Stub variable name, left justified
19 - 26 Header variable name, left justified
27 - 34 First base variable name (optional), left justified
35 - 42 Second base variable name (optional), left justified
43 + Keyword options, in any order. Use a backslash (\) to continue options on

one or more following lines.
Up to 10 lines of title text for a table may be entered immediately after the table definition line.
On table title lines, columns 1-8 must match the name on the table definition line, and all text
from columns 9 on is title text. Titles specified with table definitions print along with those from
the variable definitions. This may be controlled through the TITLES keyword (see section 7.4).
Table names print in the report and table of contents exactly as entered within the 8-character
field on the table definition line. Table names are case sensitive (1A and 1a are not the same)
and may include embedded or leading blanks, except when the table will be referenced later by
a derived table (see section 7.5).
Table names do not have to be unique, but consecutive tables cannot have the same names,
since the second table line would be interpreted as title text for the first. Duplicate names will
also cause problems with derived tables (see section 7.5) and recomputes (see section 2.2).

7.2 Dupe and Merge Lines
QTAB provides two template forms for table definition lines called DUPE and MERGE lines.
DUPE and MERGE lines are written exactly the same way as a regular table definition line, but
do not actually define a table. Rather, all variables and options specified in the template will be
carried into every following table definition lines until the next template line of the same type or
the end of the spec file is reached.
A DUPE line always overrides the corresponding variable or options in the table definitions that
come after it, whereas those specified in a MERGE line are overridden by the contents of the
subsequent table definitions.
DUPE and MERGE streams are independent of each other and both may be used at the same
time to specify different instructions.

QTAB User's Guide Revision: 21.1.5 Page 26

7.3 Table Cells and Contents
QTAB can display as many as eight different data cells simultaneously for each table cell.
Except for the frequency (F) cell, none of the cells contains data unless the appropriate keyword
is used in the table options (see section 7.4). Whether or not they contain data, all cells may be
printed and may be accessed using post processing instructions (see section 8).
Four cells contain tabulated frequencies and weighted counts obtained directly from data, the
remaining four cells contain percentages base on the contents of the frequency cells.
In addition, a text cell, accessible only through post processing (see section 8) may be used to
print text characters below the data cells for such purposes as flagging significance tests.

7.3.1 Tabulated Data Cells
The F (frequency) cell contains the ultimate result of the counts generated by the combination of
specifications in the variable definition and table weighting options. If called for, the U, W and E
cells contain the intermediate counts obtained in the process of tabulating the frequency cell.
The four cells tabulated from the data are:

F Frequency cell. The contents of this cell depend on the combination of table
weighting and vector specifications as per the following table:
Table weighting/vector specification Contents of F cell
Unweighted, no event specified: Case count
Unweighted, event specified: Volumetric sum
Weighted, no event specified: Weighted case count
Weighted, event specified: Weighted volumetric sum

U Unweighted case counts for volumetrics or weighted tabulations
W Weighted case counts for weighted volumetric tabulations
E Unweighted volumetric counts for weighted volumetric tabulations

The F cell is always tabulated and prints by default. The U, W and E cells are only tabulated
when invoked with the TCELLS keyword, and only printed if also invoked with the PCELLS
keyword in the table options (see section 7.4). If not tabulated, the U, W, and E will not be
written to any compute file and will not contain data in a recompute run (see section 2.2).

QTAB User's Guide Revision: 21.1.5 Page 27

7.3.2 Percentage Cells
QTAB provides four additional cells that are normally used to display percentages computed
after the data have been tabulated, based on the contents of the F cells. Percentages are both
computed and printed when requested after the PCELLS keyword; they are computed without
being printed when called for after the COMP keyword.
The four percentage cells are:

D Percent Down (Column percents), default base: TT row
A Percent Across (Row percents), default base: TT column
C Corner percents (Entire table is percentaged on the contents of the corner cell),

default base: TT corner

I Index (Ratio of % down in each column to % down in base column) , default base
The PCELLS or COMP keyword may specify a different base for percentage cells, and PCELLS
is also used to indicate the number of decimal places to print (see section 7.4).

7.4 Table Options
Table options are invoked in the table definition by keywords, followed in most cases by one or
more parameters. The table options keywords are:

COMP Compute percentages without printing them.
DErived Derive this table from the existing tables named (see section 7.5).
FLAG n,nn For weighted tables, print 1 asterisk (*) next to the f-cell if the u cell is less

than n, 2 asterisks (**) if the u-cell is less than nn.
FOrce Force percents to 100% if frequencies add to base.
FPrint Show frequency cell for bases on percent-only tables.
PCells Specify cells to print, punctuation and percent bases.
POst Apply post-processing instructions in order listed (default B1,B2,H,S,T).
RAnk Rank the rows on the contents of the F-cells of a specified column.
SIngle Suppress the blank lines between rows of a table.
STAR 'x' Put 'x' in non-zero cells rounding to zero (default '*').
STats Compute and print statistical summary rows/columns.
SUBtotal Specify subtotal computation order: R (default) or C first.
SUMmary Specify table summary rows/columns to print.
TCells Specify cells to be tabulated from the data.
TItles Use table titles and footnotes from sources listed (default B1,B2,H,S,T).
WT Weight table by values in named weight definition.
ZCELLS 'x' Put the character 'x' in zero cells (default '-').
ZErosup Suppress rows with no data from printing.

Except for FORCE, FPRINT, SINGLE and ZEROSUP, all of these keywords must be followed
by the appropriate parameters.

QTAB User's Guide Revision: 21.1.5 Page 28

7.4.1 The TCELLS, PCELLS and COMP Keywords
Only the F cell is tabulated and printed by default. All other cells are generated by means of the
TCELLS and PCELLS or COMP keywords and printed by means of the PCELLS keyword.
The TCELLS keyword tells QTAB which cells to tabulate from the raw data, using as parameter
a list of tabulated data cells as described in section 7.3.1 and separated by commas.
PCELLS forces the computation and specifies the base for percentage cells (see section 7.3.2).
It also tells QTAB which cells to print and specifies their punctuation. The parameter is a list of
cells with punctuation codes, separated by commas, in the order in which they should appear in
the output. Cell punctuation codes are of the form: C[B].[P]D, where C is the cell code as per
section 7.3, B an optional base row or column for percentage cells, P a punctuation code and D
the number of decimal places (0-3) to display. Data cells (except F) tabulated from the raw data
must also be specified with the TCELLS keyword.
The following punctuation commands may be used in PCELLS arguments:

n Print numbers to n decimal places, where n can be 0, 1, 2 or 3.
Cn Use commas to punctuate numbers 1,000 or larger.
Mn Toggle % signs on/off (normally only shown for whole percents).
Pn Put parentheses around numbers.
+n Add leading signs to all numbers (not just negatives).
$n Add leading dollar signs.

The COMP keyword is used to force computation of percentage cells that may be needed for
post processing but should not be printed and takes as a parameter the list of percentage cells
to compute and their bases, separated by commas, with no punctuation codes.
The following example prints integer frequencies, column (down) percents to 2 decimal places
based on total answering, and unweighted counts in parentheses with no decimals shown. It
also computes, but does not print, row (across) percents based on the total column.

PCELLS F.0,DTA.1,U.P0 TCELLS F,U COMP ATT

7.4.2 The POST Keyword
The POST keyword specifies the order in which post processing (see section 8) instruction sets
should be executed for a table, using the following codes separated by commas to describe the
possible sources:

B1 Base variable specified in first base field
B2 Base variable specified in second base field
H Header variable
S Stub variable
T Table options

If no POST keyword is given, all applicable post processing sets will be executed in the default
sequence B1, B2, H, S, T.
If a POST keyword is given, only the sources listed will be used and the order of execution will
be that in which they are listed (e.g., PO S,B1,T).

QTAB User's Guide Revision: 21.1.5 Page 29

7.4.3 The RANK Keyword
The RANK keyword, optionally followed be a column identifier, causes the rows of a table to be
printed in descending order as ranked on the contents of the F-cells of the column named, or of
the TT summary column if no column is specified. If the stub variable for the table was defined
with the R parameter as using rank level codes, these will be applied during the ranking process
(see section 4.3 for information on using rank levels).
It is possible to rank a table on the contents of other cells, or in other than descending order, by
loading the values desired into the F-cell of an unused column (typically a summary column)
using post processing (see section 8), and specifying that as the column to rank on.

7.4.4 The SUMMARY Keyword
The SUMMARY keyword is followed by a list of vector names prefixed by "R" or "C" to indicate
row or column and separated by commas. See section 3.4 for default vector labels and how to
change them. The available summary vector print options are:

Name Description Prints at: Labeling options
TT Total Beginning LABELTEXT, stub variables
NA No Answer Beginning LABELTEXT, stub variables
TA Total Answering Beginning LABELTEXT, stub variables
TM Total Mentions Beginning LABELTEXT, stub variables
TU Total - Unweighted cells Beginning LABELTEXT
MB Total Mentions End LABELTEXT
TB Total End None - uses TT label
TE Total - Unweighted cells End None - uses TU label

The following example prints the total, no answer and total answering rows at the top of the
table, the total mentions and unweighted total at the bottom, the total column at the left and the
total mentions column at the right:

SUM RTT,RNA,RTA,RMB,RTE,CTT,CMB

7.4.5 The STATS Keyword
The STATS keyword allows means and medians to be computed on the detail rows or columns
of a table using weights supplied by a numberset (see section 6.5.1). The statistics are stored
in summary vectors outside the specified table area and printed at the end of the detail vectors.
In most cases, statistical subtotals (see section 6.5) provide far greater flexibility than statistics
computed using the STATS option and should be used instead.
The STATS keyword takes as its parameter a list of statistical vectors with the numberset name
to use after an equal sign (=), and separated by semicolons (;). When a mean is requested, the
standard deviation, standard error and variance can also be displayed by entering their vector
names separated by commas (,) before the equal sign.
By default, all statistics print to two decimal places, but this can be changed by appending the
number of decimals desired (for 0 to 3) to the vector name with a period. A discreet median
may be specified by using the name DMD for the median vector.
The example below prints the row mean, standard deviation, standard error and variance using
numberset AVGWTS, the row median to one decimal place using numberset RANGE, and a
discreet column median with no decimals using the numberset CRANGE.

STATS RMN,SD,SE,VR=AVGWTS;RMD.1=RANGE;CDMD.0=CRANGE

QTAB User's Guide Revision: 21.1.5 Page 30

7.4.6 The TITLES Keyword
The TITLES keyword specifies the order in which table title lines will be printed in a table, using
the following codes separated by commas to describe the possible sources:

B1 Base variable specified in first base field
B2 Base variable specified in second base field
H Header variable
S Stub variable
T Table options

If no TITLE keyword is given, all title lines will print in the default order B1, B2, H, S, T.
If a TITLE keyword is given, only the titles from the sources listed will be printed and the order
will be that in which the sources are listed (e.g., TI S,H,B2).

7.5 Derived Tables
A derived table is created by the cell by cell addition. subtraction, multiplication or division of
other component tables previously defined in the same spec file. A derived table is defined by
the table option keyword DERIVED, followed immediately by the names of the component
tables separated by a comma. The method of derivation must also be entered in columns 9-10
of the table definition line.
A derived table has the dimensions of its component tables, which must be the same. Except
for subtotals (See section 6.4.3), the contents of each cell are derived from the corresponding
cells in the component variables, so all other specifications in stub, header and base variables
are ignored and only the annotation is used.
Derived tables are created before subtotals are computed in a QTAB run. This guarantees that
subtotals defined in the stub or header variables will be correctly computed in the derived table,
but it also means that subtotal rows and columns in component tables will not contain any data
if they are not also defined as subtotals in the derived table.
Derived tables may be used as components of other derived tables defined later in the spec file.
The different types of derived tables are as follows:

A Add the first table to the second table
S Sum of all tables from the first through the second table
M Subtract the second table from the first table
Pn Multiply the first table by the second table, dividing by 10**n (n=0...9)
Qn Divide the first table by the second table, multiplying by 10**n (n=0...9)
R Repeat the table named (takes a single component name)

QTAB User's Guide Revision: 21.1.5 Page 31

The following illustrates the use of derived tables:
 TABLE
 A1 Stub1 Header
 A2 Stub2 Header
 A3 A Stub2 Header DERIVED A1,A2
 A4 S Stub2 Header DERIVED A1,A3
 A5 Q0 Stub2 Header DERIVED A3,A1
 A6 R Stub2 Header DERIVED A1

In this example, table A3 is the sum of A1 plus A2, A4 is the sum of A1, A2 and A3, A4 is table
A3 divided by A1 (multiplied by 10**0 = 1). Table A6 is the same as table A1.

7.6 Line Tabulations and Spreads
Line tabulations are tables that show multiple variables side by side, rather than cross-tabulating
two variables. One variable is specified, and an INCREMENT that lists the offsets in the data
file for each new variable to be tabulated. The offset applies to all elements of the variable. To
permit individual filters for each variable in the line-tabulation, another variable may be mapped
against the increment cell to cell, or against the incremented variable. This variable used as a
list of filters is called a SPREAD.
Keywords in the table definition indicated the direction and name of increments and spreads:
INCH increments a header variable, and INCS a stub variable. SPREADH applies a header
variable as a spread to the columns of a table, SPREADS applies a stub variable to the rows.
The following example illustrates line tabulations and spreads:

 INCREMENT atts 0 1 1
 VAR rate LABEL H08N16
 175'1:5' Excel. V.Good Good Fair Poor
 VAR list LABEL S24,11
 ALL Col. 175
 ALL Col. 176
 ALL Col. 177
 VAR filt LABEL S24
 174'1,2,3'
 TABLE
 LT-1 list rate INCH atts
 LT-2 list rate INCH atts SPREADS filt

Table LT-1 will tabulate the data coded in column 175 in the first row, 176 in the second row,
and 177 in the third row. Table LT-2 will have the same contents, but row 1 will be filtered on
174'1', row 2 on 174'2' and row 3 on 174'3'. In general, any variable can be used as a spread
against another of the same direction (stub or header) and size.

QTAB User's Guide Revision: 21.1.5 Page 32

8 POST PROCESSING
Post processing is one of the most powerful features of QTAB. Post processing instructions
allow individual rows, columns or cells of any table to be manipulated arithmetically after the
data have been tabulated and percentages computed. Post processing can also be used to
alter the print format of cells, generate ranking information and load characters into text cells.
Post processing can be used to perform significance testing on the rows or columns of a table,
and QTAB is distributed with libraries of post processing instructions to perform such tests that
can easily be modified by sophisticated users to meet their own statistical requirements.
In general, post processing instructions work on specific cells of row or column vectors and the
results are placed in specific cells of the same or other vectors of the same type. Restrictions
can be placed on the range of operations so that, say, an instruction will only affect row r from
column c1 to column c2.
Numbersets may be used in post processing instructions, both as input and as output, so they
may be used to carry rows or columns of data to subsequent tables in a run. Constants may be
used as input to numeric computations.

8.1 Post Processing Sets
Post processing instructions are grouped in sets identified by a PP statement, beginning with
the keyword PP in column 1 followed, after one or more spaces by a unique name up to eight
characters long. Each line after the PP statement contains a single instruction using a fixed
position format. The set ends with an implicit or explicit END statement.
The PP keyword is also used in VAR statements to attach post processing sets to variables
(see section 4.1) and in table definitions to attach a set directly (see section 7.4). Up to ten sets
may be attached to each variable and table definition, so up to 60 sets may be executed for any
table. The PP sets attached to any variable or table are executed in the order listed, and the
order between components of the table is set by the POST keyword (see section 7.4.2).
In the following example, the order of execution will be: set3, set1, set2.

 VAR test LABEL S24,30 PP set1,set2
 ...
 TABLE
 1 test banner POST T,S PP set3

8.2 Post Processing Operands and Results
An operand in a post processing instruction can be a cell definition, a numberset , a constant
(for computations) or a literal (for text manipulations). The result of a post processing instruction
can be a cell, a cell mask (see section 8.2.3) or a numberset.
A numberset used in a post processing instruction must have been previously defined in the
spec file, even though any values originally defined for the numberset will be replaced for all
subsequent tables when it is used as the result of a post processing instruction.
Cell and cell mask definitions must specify both a vector name and a cell name, they may also
have a loop increment if looping is called for (see section 8.3.3).

QTAB User's Guide Revision: 21.1.5 Page 33

8.2.1 Vector Names
Post processing instructions reference row or column vectors using the 2-character vector name
for built-in summary vectors and by vector number or for detail (user specified) rows or columns.
Tags assigned in variable definitions (see section 6.4.1) may also be used to identify detail rows
or columns. Tags cannot be checked during compilation, so if tags are used in post processing
without being assigned in a variable, this will cause a run-time error.
The vector names are shown below, with the summary vectors (VR - TM) listed in the order in
which they occur in the table matrix:

Vector Contents
VR Variance
MN Mean
SD Standard Deviation
SE Standard Error
MD Median
CH Chi-Square
TT Table Total
NA Total No Answers
TA Total Answers
TM Total Mentions
1,2... First, second, etc... user-defined row or column
XX User defined row or column tagged with label _XX_ in variable definition

8.2.2 Cell Names
All eight data cells are available for use in post processing instructions, regardless of whether
they have been invoked through TCELLS or PCELLS (see section 7.3). The text cell is always
initially empty and can only be loaded through post processing instructions.

Cell Contents
F Frequency count (see section 7.3.1 for the actual contents of this cell in

different situations)
U Unweighted case count (volumetrics and weighted tables)
W Weighted case count (weighted volumetric tables only)
E Unweighted Event count (weighted volumetric tables only)
D Percent Down (column or vertical percent)
A Percent Across (row or horizontal percent)
C Corner Percent (table percent)
I Index (ratio of percent in current column to percent in total column)
T Text (accessible only through post processing)

QTAB User's Guide Revision: 21.1.5 Page 34

8.2.3 Cell Punctuation Masks
Each table cell has a mask byte which controls how the cell contents are displayed in the report.
The mask byte is normally set by the PCELLS options (see section 7.4.1), which is overridden
by any punctuation codes entered in variable specifications (see section 6.6). The mask byte
can also be loaded with punctuation codes directly in post processing.
The mask byte for a cell is addressed as the cell name prefixed by the letter M (e.g., TTMF for
the mask byte of the Total Frequency cell). The punctuation codes are:

Mask Code Punctuation
0,1,2,3 Show numbers to no, one, two or three decimal places
4 Add commas to numbers 1,000 or greater
8 Add a leading sign whether positive or negative
16 Show cell in parentheses
32 Toggle percent (%) sign on or off
64 Precede numbers with a dollar sign
255 Suppress cell from printing (this code is not additive)

Punctuation mask codes are additive: To show a number with 2 decimal places and preceded
by a dollar sign, the code would be 66 = 64 + 2.

8.3 Post Processing Operations
Post processing instructions fall into two broad groups. The first category of operations is used
to perform computations using the contents of data cells, placing the results back into data cells
or cell masks within the table. The second category of operations, used mostly to flag statistical
significance or other conditions, loads character strings into text cells.
Post processing instructions are entered using a fixed position format in which each component
occupies a specific position. For all computational operations, the format is:

Columns PP instruction element
1 Type of vector: R for row, C for column
2-5 Starting vector within row or column (optional)
6-9 Ending vector (optional)
10-11 Operation code
12-15 Times to loop (optional)
17-36 Argument 1 (1st operand)
37-56 Argument 2 (2nd operand)
57-70 Argument 3 (result field)
71+ May be used for comments

For text operations, the format is essentially the same, except that for operations which allow
more than two operands, the operands and result fields may be placed anywhere between
columns 17 and 70 of the instruction line.

QTAB User's Guide Revision: 21.1.5 Page 35

Two special instructions provide a shorthand for expanding post processing sets without writing
out extra instructions, both start in column 1 of a line:
CALL <name> Inserts the instructions from the post processing set named as if they had

been entered at that point in the spec file. The called set must have been
previously defined and it may in turn call other post processing sets.

LOOP <m n i1 i2 i3> Repeats the next m instructions n times, incrementing the arguments by
counts of i1, i2 and i3 respectively. This instruction is independent of the
post processing looping described below (see section 8.3.3).

8.3.1 Computational Operators
In the following table, A and B represent the 1st and 2nd operand, and C the result field:

Opcode Operation Notes
+ C = A + B If no B, then C = A
- C = A - B
Pn C = (A x B)/10 to nth power n = 1 through 4
Qn C = (A x 10 to nth power) / B or blank n = 1 through 4
K C = square root of A no B operand allowed
R or RD C = Rank (Descending) based on A Columns only, B = ties
RA C = Rank (Ascending) based on A Columns only, B = ties
Tn C = A rounded to n decimal places n = 1 through 9
< C = 0 if A < B
<= C = 0 if A <= B
> C = 0 if A > B
>= C = 0 if A >= B
Cn C = Reach for n issues of a publication n = 3 or 4

QTAB traps all attempts to divide by zero in post processing and sets the result field to zero.
The ranking operators (R, RD and RA) will only operate with column vectors. The 2nd operand
should contain a constant value that determines how ties are handled in assigning the sequence
of rank numbers, as follows:

k0 Ties are ranked by the order in which they appear (no equal ranks are assigned).
k1 Ties receive the same rank and the next rank number assigned will skip as many

numbers as needed to account for the number of items ranked (e.g.,1,2,3,3,5,...)
k2 Ties receive the same rank and the next rank is assigned the next number.

The Reach operator is used in media research to determine the average reach for 3 or 4 issues
of a publication when the average reach for 1 and 2 issues is known, using the Metheringham
beta binomial method. The 1st operand must contain the average reach for one issue and the
2nd operand must contain the average reach for two issues.

QTAB User's Guide Revision: 21.1.5 Page 36

8.3.2 Text Operators
QTAB provides three operators that load text strings into the T-cells of a vector when certain
conditions are satisfied by the operands. Each of these operators has two forms, to overwrite of
any existing contents of the text cell, or to append to any existing contents.
The format of the text operators is slightly different from the computational operators because
there may be one or three operands, and there may be one or two results, each of which has
two arguments, the text string to be loaded and the destination text cell.
In the following, A,B,C represent operands as used in computational post processing, t,t1,t2 are
text strings, and T,T1,T2, text cells in which these strings will be loaded:

Opcode Operation Description
TO, TA A 't' T If A >= 0, load 't' into T
XO, XA A B C 't' T If B=< A < C, load 't' into T
FO, FA A B C 't1' T1 't2' T2 If A >= 0, then if B > C, load 't1' into T1 and if

B=<C, load 't2' into T2
TO, XO and FO overwrite the contents of the text cell they load into, while TA, XA and FA
append to the contents of the text cell.
The primary purpose of text cells is to provide flags for significance testing between banner
points, where upper case represents one confidence level and lower case represents a lower
confidence level, so the contents are sorted in ASCII sequence (ABCabc) and when a letter
appears in both upper and lower case, the lower case letter is deleted.

8.3.3 Post Processing Loops
Any post processing instruction many be repeated by entering the number of times to loop in
columns 12-15. When looping is called for, at least one vector argument should be immediately
followed by a number that indicates by how many vectors it should be incremented for each new
repetition of the instruction. Vector arguments may all have different increments.

8.4 Examples of Post Processing
PP sample
*--------10-----17--....--37--....--57--....--71--...
C1 - ttf 1f 2f (col.3 = total-col.1)
Rtt tt Q21000 3f01 2f 3d01 (percentage rows 3+ on row 2)
C1 20 R 10 01f01 k2 01a01 (rank cols.1-10 on f-cell
C1 20 + 10 k16 1ma1 into a-cell, in parens)
R + taf NScarry (Save TA row in numberset)
R1 8 < 5 ttf K250 1f1 (Zero rows 1-5 if TT<250)
R1 XA 01f k1 k2 'a' 03t (If 1=<01f<2,add 'a' to 03t)
END

9 DICTIONARIES
A Dictionary is a lookup table by which labels are assigned definitions that will be substituted for
them whenever referenced in the spec file. Dictionary substitutions may be used anywhere in
the spec file, including in subsequent dictionary definitions. A QTAB spec file may contain any
number of dictionaries anywhere before the table definition section.

QTAB User's Guide Revision: 21.1.5 Page 37

9.1 Dictionary Labels and Definitions
A dictionary begins with a DICT statement and ends with an END statement. Every line
between them, except for comments and blank lines, must be a dictionary entry beginning with
a label in column 1, followed by two definitions separated by spaces and enclosed by double
quotes ("). All text after the second definition is treated as a comment and ignored, although it
will appear in the listing file. The format is:

DICT
<LABEL> <"Definition 1"> <"Definition 2">
 ...
END

For each entry, the contents of the first definition will be substituted whenever the label appears
in the specification area of a variable or weight definition. The contents of the second definition
will be substituted for the label whenever it appears anywhere else in the spec file.
The contents of a definition are only checked if and when a substitution is made in the spec file.
A dictionary definition may refer to another dictionary item previously defined in the spec file.
Labels are case sensitive and may be of any length, terminated by a space. Labels are read
sequentially from left to right and each label must be unique in a spec file. QTAB checks labels
for uniqueness as it compiles the spec file: if ABC is a label, then ABCD will be rejected,
because it will be recognized as ABC after the first three characters have been read, whereas
ABD will be accepted, because AB was not recognized as a label.

9.2 Using Dictionary Substitutions
Once a dictionary entry has been defined, it may be used anywhere in the spec file by entering
its label, prefixed by a double pound sign (##), exactly where the substitution is desired.
Substitutions take place immediately, as the spec file is compiled, and work exactly as if the
contents of the definition had been entered where the label appears in the specs. The following
example illustrates how dictionary entries are defined and substitutions are called for in specs:

DICT
brand "121" "Our Brand"
r1 "1" "first"
r2 "2" "second"
END
VAR RANKS L S36,24
##brandC1@'##r1;##r2' ##brand ranked ##r1 or ##r2
##brandC1@'##r1' ##brand ranked ##r1
##brandC1@'##r2' ##brand ranked ##r2
END

The result of the preceding would be exactly as if the variable RANKS had been written as:
VAR RANKS L S36,24
121c1@'1;2' Our Brand ranked first or second
121c1@'1' Our Brand ranked first
121c1@'2' Our Brand ranked second
END

Note how the first definition is always used when a substitution is made on the specification side
of a variable definition line, while the second definition is always used in the label area.
QTAB parses the text immediately following the ## keyword for a valid label, and continues until
it finds the longest one so far in its dictionary as it processes the spec file. This allows labels to

QTAB User's Guide Revision: 21.1.5 Page 38

be concatenated with additional text, or even other labels, to determine which dictionary entry
will be used for a substitution.

9.3 Built-in Dictionary Labels
QTAB provides several built-in dictionary labels for which the definitions are generated by the
program when it runs. These are:

##SYS_DATE The current date at the time of execution, as it appears at the top
of the listing, in the format: Mth dd yyyy (e.g., Dec 16 1998)

##SYS_TIME The time at which QTAB began execution, as it appears at the top
of the listing, in the format: hh:mm (e.g., 15:30)

##SYS_INTAP The name of the input file as it appears in the first INTAP data
directive specified

##SYS_REPORT The name of the report file as it appears in the REPORT data
directive

These built-in dictionary entries have the same contents for both spec and text definitions.

9.4 Command Line Parameters
QTAB provides for pairs of parameters and their arguments to be passed to the program on the
command line. Each parameter becomes a dictionary entry label, and its argument is used as
the contents of both spec and text definitions for that dictionary entry. The format is:

QTAB specfile /# Parameter1 Argument1 Parameter2 Argument2 .../#
The following example demonstrates how a command line parameter can be used with a table
of dictionary entries to select the output format of a QTAB run:

QTABD QTDEMO.QTS /# RUNTYPE P /# <--- Command line
...
DICT
T_OPT_P "" "PCELLS dta.0 SUM rta FPRINT" Use for Percents only
T_OPT_F "" "PCELLS f.0,dta.0 SUM rta" Use for Freqs & percents
END
...
MERGE STUB HEADER ##T_OPT_##RUNTYPE
...

In this example, the argument for the command line parameter "RUNTYPE" is "P" which will be
substituted for ##RUNTYPE in "##T_OPT_##RUNTYPE " in the MERGE statement. This will be
recognized by QTAB as the dictionary label T_OTP_P, and the text definition for that dictionary
entry will be substituted into the MERGE statement, specifying the desired table options. When
using command line parameters in this manner, care must be taken that any argument supplied
is accounted for in the specs, otherwise the reference will not resolve, causing a fatal error.

10 MACRO TEMPLATES
QTAB allows a variable to reuse the specs or label text from another variable through the use of
equates (see section 4.1.3), but it also provides a more powerful method for generating similarly
structured variables quickly and reliably from macro templates.

QTAB User's Guide Revision: 21.1.5 Page 39

A macro template is a model variable identified by the keyword MACRO, instead of VAR, in
which any elements that may need to be changed are replaced by place markers identified by a
caret (^) followed by a case-sensitive alphanumeric character label (^A and ^a are different).
Place markers may be used anywhere in the body of a variable, except in the spacer column of
any line other than row label text in a stub variable. Post processing cannot be called directly
from a macro template.

10.1 Defining Variables From Macro Templates
A variable is defined from a macro template by a macro equate Mnn, where nn is a column
offset applied to all specifications defined in the template. Post processing may be called for
after the macro equate, but no other equates, specifications or label text except for substitution
parameters are allowed anywhere in the variable. Each substitution parameter must appear on
a separate line, with the place marker label in column one, followed after one or more spaces by
the replacement text in double quotes.
QTAB treats a variable defined from a macro template just as if the contents of the template had
been entered for the variable definition, with the contents of each substitution parameter
beginning exactly where the corresponding place marker appears. The only exception to this
rule is that substitutions in the spec area may be longer than would fit in the space if the variable
were specified directly. This is not true for substitutions in the text label areas, where care must
be taken to preserve columnar alignments.
For stub row labels only, place markers may start in the spacer column. This allows templates
with what appear to be variable numbers of rows, using spacer codes at the beginning of label
text substitutions to suppress the display of specific rows in the output (see section 4.2.2).
Here following is an example of a simple macro template:

MACRO M1 L S36,16
 THave you ever purchased ^A
101'1,2' Yes
 No
^1 ^X
END

Here is an example of a variable built from the preceding template:
VAR V1 L M00;M1
A "Brand X"
1 "stk0"
X "D Not used in this table"
END

In this example, the third line of the table which could have been used for another response,
was defined as a dummy value (a subtotal containing the constant value zero), and the row
label text suppressed by use of the "D" space code.

10.2 Using Macro Templates With Dictionaries
Dictionary entries may be used in macro templates and in substitution parameters and function
the same way as in any other variable, with the first definition substituted for the label when it
appears in the spec area and the second definition substituted everywhere else. This means
that a single dictionary entry can be used to provide both specifications and label text for a row
or column, or for a table title.

QTAB User's Guide Revision: 21.1.5 Page 40

The following example illustrates the use of dictionary entries and parameter substitution to
generate tables from a very generic template:

*** Dictionary definitions
DICT
BR_A "112" "ALPHA"
BR_B "113" "BETA"
BR_C "114" "GAMMA"
TOP1 "1" "FIRST"
TOP2 "12" "FIRST OR SECOND"
END
*** Template
MACRO SUMTAB L S24,32
 TBRANDS RANKED ^1 FOR
 T- ^2 -
##BR_A'^1' ##BR_A
##BR_B'^1' ##BR_B
##BR_C'^1' ##BR_C
END
*** Variables
VAR Q2S1 L M0;SUMMARY
1 "##TOP1"
2 "TOTAL SALES VOLUME"
VAR Q2S2 L M0;SUMMARY
1 "##TOP2"
2 "TOTAL SALES VOLUME"
VAR Q3S1 L M7;SUMMARY
1 "##TOP1"
2 "QUALITY OF CUSTOMER SERVICE"
VAR Q3S2 L M7;SUMMARY
1 "##TOP2"
2 "QUALITY OF CUSTOMER SERVICE"
END

11 FLOW CONTROL AND BATCH PROCESSING
QTAB is strictly script-driven, as are most of the programs in the QUIP System. It is designed
for a production environment and optimized for repetitive processing tasks. QTAB can also be
used as a tabulation engine for "user friendly" systems built with environments or languages that
can generate text instructions and run external processes, such as FoxPro, Delphi, Visual
Basic, and most standard programming languages.
Through judicious use of dictionaries and templates, it is possible to design "generic" spec files
that can be used for a number of similar projects, needing only minimal information to be added
or modified for each individual set of tabulations. QTAB provides flow control features to assist
with batch processing and process automation situations, and to allow building modular libraries
of spec files that can be selected and included into other files at run-time.

11.1 Includes
The include statement allows a spec file to call another spec file. QTAB processes an included
spec file as if its entire contents appeared in the calling file beginning at the line containing the
include statement, and then returns to processing the calling file at the next line. Included spec

QTAB User's Guide Revision: 21.1.5 Page 41

files can in turn call other spec files, but the flow of specs will always return through all nested
levels to the original file.
An include statement begins with the keyword #INCLUDE in column 1, followed by the name of
the spec file to be included. The format is:

#INCLUDE <[path]specfile.ext>
An include statement must always follow an END statement (see section 1.2), so it cannot
appear within a variable, macro template, dictionary or the table definition section, all of which
would be terminated by the END statement. Likewise, any spec file that will be called by an
include statement must also be terminated by an END statement.

11.2 Stopping and Starting Specs and Listings
QTAB provides special statements that allow the flow of spec processing to be turned on or off
when reading a spec file, and to suppress the output of those specs processed to the listing file.
The flow control statements all consist of a single beginning in column 1 with a keyword and, if
allowed, its parameter, with no other text on the line. They are:

STOPSPEC Stop processing the spec file from this point until a
STARTSPEC statement is read.

STARTSPEC Resume processing the spec file if it has been stopped by
a STOPSPEC statement.

STARTSPEC IF <##X=Y> Resume processing the spec file if it has been stopped by
a STOPSPEC statement and if the definition of dictionary
entry X matches the character string "Y".

STOPLIST Stop sending any output to the listing file from this point
until a STARTLIST statement is read.

STARTLIST Resume sending output to the listing file if it has been
stopped by a STOPLIST statement.

All of these statements must appear after an END statement and take effect immediately and
unconditionally, except for STARTSPEC IF, which applies only if the condition evaluates true.
STARTSPEC IF may be used with any dictionary entry, however it is most effective when used
with command line parameters (see section 9.4) to control inclusion or exclusion of sections of
spec files at run time.

QTAB User's Guide Revision: 21.1.5 Page 42

In the following example, one or the other of two spec files (or neither) will be included in the
calling spec file depending on the value of the dictionary entry labeled RUNCODE:

STOPSPEC
STARTSPEC IF ##RUNCODE=A
#INCLUDE subfile1.qts
END
STOPSPEC
STARTSPEC IF ##RUNCODE=B
#INCLUDE subfile1.qts
END
STARTSPEC

12 INTERFACING WITH OTHER SOFTWARE
QTAB normally reads data from flat files and outputs tables in a single plain ASCII report file.
These formats provide the widest level of compatibility, allowing almost any data to be readily
converted to a file QTAB can tabulate, and making it possible for QTAB's output to be imported
into most other analytical software, either directly or through format conversion programs.
QTAB provides a few special options designed to make it easier to use directly with several
other types of programs commonly used to process or analyze data in a PC environment.

12.1 Tabulating Data from .DBF Files
QTAB can tabulate dBASE type (.DBF) files directly. The keyword "DBASE" is used in the
INTAP statement instead of a record length to indicate that the data file is in this format:

INTAP datafile.dbf (DBASE.

Addressing is implicit in a DBASE type run, so no SETUP ADDRMODE statement should be
entered in the spec file. Data locations are addressed as dBASE field names surrounded by
dollar signs. DBASE fields are actually ASCII character fields starting at that address, from
which up to the 15 leftmost characters can be accessed using normal QTAB specs.
The following example could be used to sum sales volume within region:

 $REGION$C4@='EAST';$SALES$C10 Eastern Region
 $REGION$C4@='CENT';$SALES$C10 Central Region
 $REGION$C4@='WEST';$SALES$C10 Western Region

In this case, the field named "REGION" could be of any size in the .DBF file, as long as the
contents are left justified, because only the first 4 bytes will be tested. The field "SALES" should
be numeric with a width of 10 bytes. Explicit decimals (with a period) will be read properly.
QTAB does not generate database reports, but it provides far greater flexibility and speed in
cross-tabulating data than the report generator in any database program. QTAB operates in
batch mode, so many database programs that support DBASE type files and have procedural
languages can be used to build spec files and run QTAB on their data.

12.2 Importing Tables into Spreadsheets
Two global options may be specified on the RUNOPS line (see section 3.2) to facilitate the
conversion of QTAB tables into popular spreadsheet formats by writing individual tables to
separate files and by adding tab character delimiters between table cells. These options, which
may be used individually, or together, are:

QTAB User's Guide Revision: 21.1.5 Page 43

EXCEL Adds a tab character immediately following each table cell and immediately after
the stub label area for each table row that contains printing cells. While this may
cause the table columns to appear out of kilter with the banner annotation when
printed or viewed on screen, it allows many spreadsheets that can import tables
in "tab delimited" format to read the table cells into separate spreadsheet cells.

LOTUS Writes out each individual table as a separate file. The file name of each file will
be as given in the REPORT data directive (see section 2.1), but file extensions
will be used to number the files sequentially, starting with 001.

Some tips for successfully setting up tables to be read into spreadsheets are:
 Set page length to 999 lines in the RUNOPS to prevent page skips and repeating banners.
 Keep stub labels on a single line and let the spreadsheet wrap annotation.
 Show frequencies or percents, but not both. The FPRINT table option (see section 7.4) can

be used to show the frequencies in the base row or column of percent only tables.

13 WHERE TO GET ADDITIONAL INFORMATION
For information about QTAB and other QUIP System programs, contact:

Jan Werner Data Processing

www.jwdp.com

	TABLE OF CONTENTS
	INTRODUCTION
	1 THE SPEC FILE
	1.1 Essential Elements
	1.2 Keywords and Statements

	2 DATA DIRECTIVES
	2.1 File Names
	2.2 Compute and Recompute
	2.3 Command Line Data Directives

	3 GLOBAL OPTIONS
	3.1 Address Mode
	3.2 Run Options
	3.3 Run Titles
	3.4 Summary Row and Column Labels

	4 VARIABLE DEFINITIONS
	4.1 The VAR statement
	4.1.1 Classes of Variables
	4.1.2 Examples of VAR statements
	4.1.3 Variable Equates

	4.2 Labels and Table Annotation
	4.2.1 Titles and footnotes
	4.2.2 Stub Annotation
	4.2.3 Header Annotation
	4.2.4 Base Annotation

	4.3 Ranking and Rank Levels

	5 THE QUIP SPECIFICATION LANGUAGE
	5.1 Data Specifications
	5.1.1 Addressing Data
	5.1.2 Fields and Numbers
	5.1.3 Columns and Punches
	5.1.4 Literals, Constants and Numeric Expressions

	5.2 Counting Cases
	5.2.1 Field and Numeric Tests
	5.2.2 Punch Tests
	5.2.3 Boolean Operators and Compound Tests
	5.2.4 Examples of Test Conditions

	5.3 Weights

	6 SPECIFYING ROWS AND COLUMNS
	6.1 Volumetrics
	6.2 Generated Vectors
	6.3 Value, Range and Array Field Operators
	6.3.1 The Value Field Operator
	6.3.2 The Range Field Operator
	6.3.3 The Array Field Operator

	6.4 Nets and Subtotals
	6.4.1 Tags
	6.4.2 Nets
	6.4.3 Subtotals
	6.4.4 Examples of Nets and Subtotals
	6.4.5 Special Purpose Subtotals

	6.5 Statistical Subtotals
	6.5.1 Numbersets
	6.5.2 Statistical Subtotals Using Numbersets
	6.5.3 Extended Statistical Subtotals

	6.6 Specifying Cell Punctuation in Variable Specifications

	7 TABLE DEFINITIONS
	7.1 The Table Definition Line
	7.2 Dupe and Merge Lines
	7.3 Table Cells and Contents
	7.3.1 Tabulated Data Cells
	7.3.2 Percentage Cells

	7.4 Table Options
	7.4.1 The TCELLS, PCELLS and COMP Keywords
	7.4.2 The POST Keyword
	7.4.3 The RANK Keyword
	7.4.4 The SUMMARY Keyword
	7.4.5 The STATS Keyword
	7.4.6 The TITLES Keyword

	7.5 Derived Tables
	7.6 Line Tabulations and Spreads

	8 POST PROCESSING
	8.1 Post Processing Sets
	8.2 Post Processing Operands and Results
	8.2.1 Vector Names
	8.2.2 Cell Names
	8.2.3 Cell Punctuation Masks

	8.3 Post Processing Operations
	8.3.1 Computational Operators
	8.3.2 Text Operators
	8.3.3 Post Processing Loops

	8.4 Examples of Post Processing

	9 DICTIONARIES
	9.1 Dictionary Labels and Definitions
	9.2 Using Dictionary Substitutions
	9.3 Built-in Dictionary Labels
	9.4 Command Line Parameters

	10 MACRO TEMPLATES
	10.1 Defining Variables From Macro Templates
	10.2 Using Macro Templates With Dictionaries

	11 FLOW CONTROL AND BATCH PROCESSING
	11.1 Includes
	11.2 Stopping and Starting Specs and Listings

	12 INTERFACING WITH OTHER SOFTWARE
	12.1 Tabulating Data from .DBF Files
	12.2 Importing Tables into Spreadsheets

	13 WHERE TO GET ADDITIONAL INFORMATION

